رئيس مجلس إدارة شركة ABH Training & Supply
الانفجار العظيم في علم الكون الفيزيائي هو النظرية السائدة حول نشأة الكون. تعتمد فكرة النظرية أن الكون كان في الماضي في حالة حارة شديدة الكثافة فتمدد، وأن الكون كان يومًا جزء واحد عند نشأته. بعض التقديرات الحديثة تُقدّر حدوث تلك اللحظة قبل 13.8 مليار سنة، والذي يُعتبر عمر الكون. وبعد التمدد الأول، بَرَدَ الكون بما يكفي لتكوين جسيمات دون ذرية كالبروتونات والنيترونات والإلكترونات. ورغم تكوّن نويّات ذرية بسيطة خلال الثلاث دقائق التالية للانفجار العظيم، إلا أن الأمر احتاج آلاف السنين قبل تكوّن ذرات متعادلة كهربيًا. معظم الذرات التي نتجت عن الانفجار العظيم كانت من الهيدروجين والهيليوم مع القليل من الليثيوم. ثم التئمت سحب عملاقة من تلك العناصر الأولية بالجاذبية لتُكوّن النجوم والمجرات، وتشكّلت عناصر أثقل من خلال تفاعلات الانصهار النجمي أو أثناء تخليق العناصر في المستعرات العظمى.
تُقدّم نظرية الانفجار الكبير شرحاً وافياً لمجموعة واسعة من الظواهر المرئية، بما في ذلك وفرة من العناصر الخفيفة والخلفية الإشعاعية للكون والبنية الضخمة للكون وقانون هابل. ونظرًا لكون المسافة بين المجرات تزداد يوميًا، فبالتالي كانت المجرات في الماضي أقرب إلى بعضها البعض. ومن الممكن استخدام القوانين الفيزيائية لحساب خصائص الكون كالكثافة ودرجة الحرارة في الماضي بالتفصيل. وبالرغم من أنه يمكن لمسرعات الجسيمات الكبرى استنساخ تلك الظروف، لتأكيد وصقل تفاصيل نموذج الانفجار الكبير، إلا أن تلك المسرعات لم تتمكن حتى الآن إلا البحث في الأنظمة عالية الطاقة. وبالتالي، فإن حالة الكون في اللحظات الأولى للانفجار العظيم مبهمة وغير مفهومة، ولا تزال مجالاً للبحث. كما لا تقدم نظرية الانفجار العظيم أي شرح للحالة الأولية للكون، بل تصف وتفسر التطور العام للكون منذ تلك اللحظة.
قدّم الكاهن الكاثوليكي والعالم البلجيكي جورج لومتر الفرضية التي أصبحت لاحقًا نظرية الانفجار العظيم عام 1927. ومع مرور الوقت، انطلق العلماء من فكرته الأولى حول تمدد الكون لتتبُّع أصل الكون، وما الذي أدى إلى تكوّن الكون الحالي. اعتمد الإطار العام لنموذج الانفجار العظيم على نظرية النسبية العامة لأينشتاين، وعلى تبسيط فرضيات كتجانس نظم وتوحد خواص الفضاء. وقد صاغ ألكسندر فريدمان المعادلات الرئيسية للنظرية، وأضاف فيليم دي سيتر صيغ بديلة لها. وفي عام 1929، اكتشف إدوين هابل أن المسافات إلى المجرات البعيدة مرتبطة بقوة بانزياحها الأحمر. استُنتج من ملاحظة هابل أن جميع المجرات والعناقيد البعيدة لها سرعة ظاهرية تختلف عن فكرتنا بأنها كلما بَعُدت، زادت سرعتها الظاهرية، بغض النظر عن الاتجاه.
ورغم انقسام المجتمع العلمي يومًا بين نظريتي تمدد الكون بين مؤيد لنظرية الانفجار العظيم، ومؤيد لنظرية الحالة الثابتة، إلا أن التأكيد بالملاحظة والرصد على صحة سيناريو الانفجار العظيم جاء مع اكتشاف الخلفية الإشعاعية للكون عام 1964، واكتشاف أن طيف تلك الخلفية الإشعاعية يتطابق مع الإشعاع الحراري للأجسام السوداء. منذ ذلك الحين، أضاف علماء الفيزياء الفلكية إضافات رصدية ونظرية إلى نموذج الانفجار العظيم، وتمثيلها الوسيطي كنموذج لامبدا-سي دي إم الذي هو بمثابة إطار للأبحاث الحالية في علم الكونيات النظري.
يقودنا تتبع تمدد الكون عبر الزمن إلى حقيقة أن الكون كان في الماضي في حالة شديدة الكثافة والحرارة. ويشير هذا التفرد إلى تعطُّل تطبيق النسبية العامة، فلا يمكننا تتبع حالة التفرد تلك على وجه اليقين أكثر من فترة نهاية حقبة بلانك. ويسمى هذا التفرد أحيانًا «الانفجار العظيم»، ولكن هذا المصطلح قد يشير أيضًا إلى الحالة الأولى(1) التي كانت أكثر حرارة وكثافة، التي تعتبر لحظة ميلاد الكون. وبناءً على قياسات التمدد مقارنةً بنموذج مستعر أعظم من النوع أ وقياسات التقلبات الحرارية في الخلفية الإشعاعية للكون وقياسات الارتباط بين المجرات، أمكن حساب عمر الكون وتقديره بنحو 13.798 ± 0.037 مليار سنة. وقد أدى التوافق بين هذه القياسات الثلاثة المستقلة عن بعضها البعض إلى دعم نموذج لامبدا-سي دي إم بقوة، والذي يصف بالتفصيل محتويات الكون.
تخضع الأطوار الأولى للانفجار العظيم للعديد من التكهنات. ففي النماذج الأكثر شيوعًا، كان الكون ممتلئًا بصورة متجانسة وقياسية بجسيمات ذات كثافة طاقة ودرجات حرارة وضغوط هائلة، وأنه تمدد وبَرُد بسرعة فائقة. وخلال ما يقرب من 10 −37 ثانية في التمدد، تسبب تحول طوري في تضخُّم الكون ونموه نموًا أُسيًا. وبعد توقف التضخم، تألّف الكون من بلازما كوارك-غلوونية، وغيرها من جميع الجسيمات الأولية الأخرى.كانت درجات الحرارة في تلك الحالة مرتفعة حتى تسنّى تحرك الجزيئات عشوائيًا وفق سرعات نسبية، ونتجت أزواج ومضاداتها من كل نوع بصفة مستمرة، بل وتلاشى بعضها عبر الاصطدامات. وفي مرحلة ما، حدث تفاعل يسمى بنشأة الباريونات لم يحافظ على رقم باريون، مما أدى إلى وجود فائض صغير جدًا من الكواركات والليبتونات يفوق مضادات الكوارك ومضادات الليبتونات بنحو جزء واحد من 30 مليون جزء. أدى ذلك إلى هيمنة المواد على المواد المضادة في الكون الحالي.
ظلت كثافة الكون وحرارته في انخفاض، وبالتالي تناقصت طاقة أي من جسيماته. ثم نقلت الأطوار الانتقالية كسر تناظر القوى الأساسية للفيزياء ومتغيرات الجسيمات الأولية إلى وضعها الحالي. ففي خلال حوالي 10−11ثانية، أصبحت حالة الكون أكثر استقرارًا، حيث انخفضت طاقات الجسيمات إلى القيم التي يمكن تحقيقها في تجارب فيزياء الجسيمات. وفي حوالي 10−6 ثانية، تجمّعت الكواركات والغلوونات لتكوين الباريونات مثل البروتونات والنيوترونات. أدى فائض صغير من الكواركات مقابل مضادات الكوارك إلى فائض صغير من الباريونات مقابل مضادات الكوارك. وبانخفاض درجات الحرارة، لم تعد درجة الحرارة تكفي لتكوين أزواج جديدة من البروتون-مضاد البروتون وكذلك أزواج النيوترونات-مضادات النيوترونات، لذا نتجت على الفور عمليات تلاشي ضخمة، تبقى منها فقط واحد من كل 1010 من البروتونات والنيوترونات الأصلية، لم يتبق أي من مضاداتها. كذلك حدثت عملية مشابهة خلال ثانية واحدة للإلكترونات والبوزيترونات. وبعد عمليات التلاشي تلك، توقفت باقي البروتونات والنيوترونات والإلكترونات عن التحرك بنسبية، وشكّلت الفوتونات غالبية كثافة طاقة الكون (مع مساهمة بسيطة من النيوترينوات).
وخلال دقائق من تمدد الكون، عندما كانت درجة الحرارة حوالي مليار كلفن والكثافة تساوي تقريبًا كثافة الهواء، توحّدت النيوترونات مع البروتونات لتشكيل ديوتريومات الكون وأنوية ذرات الهيليوم في عملية تسمى تخليق الانفجار العظيم النووي. وظلت معظم البروتونات منفصلة كأنوية لذرات الهيدروجين. ومع تبرُّد الكون، سيطرت جاذبية إشعاع الفوتونات على كثافة طاقة الكتلة الباقية من المادة. وبعد حوالي 379,000 سنة، اتحدت الإلكترونات مع أنوية الذرات (معظمها من الهيدروجين)؛ وبالتالي انفصل الإشعاع عن المادة، وانطلق في الفضاء دون عوائق إلى حد كبير. وتعرف بقايا هذا الإشعاع باسم الخلفية الإشعاعية للكون.
على مدى فترة طويلة من الزمن، تجاذبت المناطق الأكثر كثافة من المادة شبه الموزعة بتجانس قليلاً نحو المادة، وبالتالي نمت بكثافة أكبر، وتشكّلت سحب غازية ونجوم ومجرات وبقية أجزاء البنية الفلكية الأخرى التي يمكن ملاحظتها اليوم. اعتمدت تفاصيل تلك العملية على كمية ونوع مادة الكون. وتنقسم أنواع المادة إلى مادة مظلمة باردة ومظلمة دافئة ومظلمة حارة وباريونة. وقد أظهرت أفضل القياسات المتاحة (من خلال مسبار ويلكينسون لقياس اختلاف الموجات الراديوية) أن البيانات تتوافق بشكل جيد مع فرضية نموذج لامبدا-سي دي إم التي تفترض أن المادة المظلمة كانت باردة (حيث اختفت المادة المظلمة الدافئة في وقت مبكر أثناء حقبة إعادة التأين، وقدّرت أنها تُشكّل حوالي 23٪ من نسبة المادة/طاقة الكون، بينما تُشكّل المادة الباريونية حوالي 4.6٪. وفي «نموذج التمدد» الذي يتضمن مادة مظلمة ساخنة في شكل نيوترينوات، إذا كانت «الكثافة الفيزيائية للباريون» bh2 تقدر بحوالي 0.023 (وهي تختلف عن «كثافة الباريون» Ωb التي يُعبّر عنها كجزء من النسبة الإجمالية لكثافة المادة/الطاقة، والتي أُشير إليها أعلاه بحوالي 0.046)، وكثافة المادة المظلمة الباردة المصاحبة Ωch2 حوالي 0.11، فإن كثافة النيوترينو المصاحب تُقدّر بأقل من 0.0062.
هناك دلائل مستقلة من رصد المستعرات العظمى من الدرجة Ia والخلفية الإشعاعية للكون تُظهر أن الكون اليوم تسيطر عليه شكل غامض من الطاقة تعرف باسم الطاقة المظلمة التي تتخلل كامل الفضاء. وتُقدّر نتائج الرصد أن 73٪ من كثافة الطاقة الكلية للكون اليوم تتواجد في تلك الصورة من الطاقة. ومن المرجّح أن الكون في بداية نشأته كان مغمورًا بالطاقة المظلمة، ولكن مع تضايق المساحة وتقارب كل شيء من بعضه البعض، سيطرت الجاذبية، وكبحت تمدد الكون ببطء. وفي نهاية المطاف، وبعد عدة مليارت من سنوات تمدد الكون، تسبب تزايد الطاقة المظلمة في تسارع تمدد الكون ولكن ببطء. وتتخذ الطاقة المظلمة في أبسط صيغها هيئة مصطلح الثابت الكوني في معادلات أينشتاين للمجال في النسبية العامة، ولكن تكوينها وآليتها غير معروفين، وبشكل أعم، ما زالت تفاصيل معادلة حالتها وعلاقتها مع نظرية النموذج العياري لفيزياء الجسيمات قيد البحث رصديًا ونظريًا. كل هذا التطور الكوني بعد حقبة التضخم الكوني يمكن وصفها بدقة وفق نموذج لامبدا-سي دي إم، الذي يستخدم الأطر المستقلة لميكانيكا الكم والنسبية العامة لأينشتاين. وكما أشير أعلاه، لا يوجد نموذج موثوق يصف ما حدث قبل 10−15 ثانية من نشأة الكون. ويبدو أن هناك حاجة إلى نظرية جاذبية كمية موحدة جديدة لكسر هذا الحاجز لفهم تلك الحقبة من تاريخ الكون، والتي تعد حاليًا إحدى أعظم المسائل التي لم تُحلّ في الفيزياء.
تعتمد نظرية الانفجار الكبير على فرضيتين رئيسيتين: شمولية القوانين الفيزيائية والمبدأ الكوني الذي يفترض أنه في المقاييس الكبيرة، يُوصف الكون بأنه فضاء متجانس ومُوحّد الخواص. كانت تلك الأفكار في البداية من المُسلّمات، ولكن اليوم هناك جهود لاختبار كل منها. فعلى سبيل المثال، فإن الفرضية الأولى تم اختبارها من خلال الرصد الذي أظهر أن أكبر انحراف محتمل لثابت البناء الدقيق خلال جزء كبير من عمر الكون يُقدّر بنحو 10−5. كما استخدمت النسبية العامة لعمل اختبارت صارمة على مقاييس النظام الشمسي والنجوم الثنائية.
وإذا افترضنا أن الكون متجانس الخواص كما يُرى من الأرض، فإن المبدأ الكوني يمكن استنتاجه من مبدأ كوبرنيكوس البسيط، الذي ينص على أنه لا يوجد أفضلية. ولذا، فقد تم التحقق من صحة المبدأ الكوني إلى مستوى 10−5 عبر رصد الخلفية الإشعاعية للكون. كما تم قياس تجانس الكون على المقاييس الأكبر حتى مستوى 10٪.
تصف النسبية العامة الزمكان وفق نظام متري، يمكن من خلاله تحديد المسافات التي تفصل أي نقطة عن نقطة قريبة. هذه النقاط قد تكون مجرات أو نجوم أو أشياء أخرى، هذه النقاط نفسها يتم تحديدها باستخدام متعدد شعب أو «شبكة» تشمل كل الزمكان. ينص المبدأ الكوني أن هذا النظام المتري يجب أن يكون متجانس ومُوحّد الخواص في المقاييس الكبيرة يمكن تمييزه باستخدام إحداثيات روبرتسون-ووكر. هذه الإحداثيات تحتوي على مقياس يصف تغيّر حجم الكون عبر الزمن، مما يسّر اختيار نظام إحداثي مناسب يدعى مسافة المسايرة. وفق هذا النظام الإحداثي تتمدد الشبكة بتمدد الكون، وتبقى الأجسام التي تتحرك بتمدد الكون في مواضع ثابتة على الشبكة، وتبقى مسافاتها الإحداثية (مسافات المسايرة) ثابتة، في الوقت الذي تتزايد فيه المسافات الفعلية بين الأجسام إطراديًا بتمدد الكون. لا يعد الانفجار العظيم انفجارًا للمادة يتحرك نحو الخارج لملء كون فارغ. ولكن بمرور الوقت يتمدد الكون في كل إتجاه وتتزايد المسافات الفعلية بين الأجسام المتحركة. ونظرًا لكون إحداثيات روبرتسون-ووكر تفترض توزيعًا منتظمًا للكتلة والطاقة، فإنها تنطبق فقط على القياسات الكبيرة، أما النطاقات المحدودة من المادة مثل مجرتنا المترابطة تجاذبيًا فلا تنطبق عليها نظرية التمدد واسع النطاق كما في الفضاء خارج مجرتنا. من الخواص الهامة لزمكان الانفجار العظيم هو وجود الآفاق. ونظرًا لحقيقة أن الكون له عمر محدد، وأن الضوء ينتقل بسرعة محددة، فقد تكون هناك أحداث حدثت في الماضي لم يتوفر لها الوقت ليتمكن ضوئها من الوصول إلينا، مما جعل هناك حدًا للمسافة الأفقية التي يمكن رصدها. على العكس، نظرًا لتمدد الفضاء، تبتعد الأجسام البعيدة بسرعة أكبر من أي وقت مضى، وقد لا يُدرك الضوء المنبعث بواسطتنا اليوم أبدًا الأجسام البعيدة للغاية. فبالتالي، يُمكن تعريف الأفق المستقبلي بأنه الأفق الذي يحدد الأحداث المستقبلية التي سنتمكن من التأثير فيها. لذا فإن وجود أي نوع من الآفاق يعتمد على تفاصيل نموذج إحداثيات روبرتسون-ووكر الذي يصف كوننا. كما أن فهمنا للكون يعتمد على افتراضنا وجود أفق قديم في العصور السحيقة، على الرغم من أنه واقعيًا نظرتنا أيضًا محدودة لغموض الكون في لحظاته الأولى، أي أن رؤيتنا لا يمكنها أن تمتد إلى هذا الماضي البعيد، كما أنه إذا استمر الكون في التسارع، سيكون هناك أفق مستقبلي. كان الفلكي الإنجليزي فريد هويل أول من أطلق مصطلح «الإنفجار العظيم» (بالإنجليزية: Big Bang) خلال مقابلة له مع هيئة الإذاعة البريطانية سنة 1949 م. ومن الشائع بين الناس أن هويل الذي كان يفضل نموذج «الحالة الثابتة» الكوني، كان يقصد من تلك التسمية السخرية، إلا أن هويل نفسه نفى ذلك صراحةً، وقال أن التسمية كانت للفت النظر وتسليط الضوء على الفرق بين النموذجين لمستمعي الراديو.
تطورت نظرية الانفجار العظيم من خلال رصد بنية الكون والأبحاث النظرية. ففي سنة 1912 م، قام فيستو سليفر بأول قياس لتأثير دوبلر للسديم الحلزوني (السديم الحلزوني هو مُسمّى قديم للمجرات الحلزونية)، وسرعان ما اكتشف أن تقريبًا جميع تلك السُدُم كانت منحسرة عن الأرض، في الوقت الذي كان فيه نزاع شابلي-كورتيس المثير للجدل محتدمًا حول ما إذا كانت هذه السدم «أكوان جُزُرية» خارج مجرتنا درب التبانة. وبعد عشر سنوات، استنتج عالم الكون الفيزيائي والرياضياتي الروسي ألكسندر فريدمان معادلات فريدمان من معادلات أينشتاين للمجال، مُبيّنًا أن الكون قد يكون يتمدد مُخالفًا بذلك نموذج الكون الساكن التي كان أينشتاين يؤيدها وقتئذ.[37] وفي سنة 1924 م، أظهر قياس إدوين هابل لمسافة أقرب السدم الحلزونية، أن تلك النظم هي بالتأكيد مجرات أخرى. وبصورة مستقلة، استنتج الكاهن الكاثوليكي والفيزيائي جورج لوميتر عام 1927 معادلات فريدمان، وتوصّل إلى أن انحسار السدم يُستدل منه على تمدد الكون. وفي سنة 1931 م، ذهب لوميتر أبعد من ذلك وافترض أنه نتيجة التمدد الواضح للكون، فلا بد لو عُدنا بالزمن أن نجد في لحظة ما كانت كل مادة الكون مجتمعة في نقطة ما على هيئة «ذرة بدائية» عندها بدأ الزمن والفضاء في النشوء.
بداية من سنة 1924 م، وضع هابل سلسلة من مؤشرات المسافة التي سبقت وضع سلم المسافات الكونية مستخدمًا مقراب هوبر الذي قطره 100-بوصة (2,500 مـم) في مرصد جبل ويلسون. سمح له ذلك بتقدير المسافات إلى المجرات التي كان انزياحها الأحمر قد قِيس بالفعل، أغلبها بواسطة سيفلر. وفي سنة 1929 م، اكتشف هابل وجود علاقة بين المسافة وسرعة الانحسار (يعرف الآن بقانون هابل)، وهو ما توقعه لوميتر وفقًا للمبدأ الكوني.